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The principle of operation of intense radiation devices such as microwave tubes, free-electron lasers, and
masers, is based on a distributed interaction between an electron beam and electromagnetic radiation. Some of
the effects emerging during the interaction involve a continuum of frequencies in their broadband spectrum.
We developed a three-dimensional, space-frequency theory for the analysis and simulation of radiation exci-
tation and propagation in electron devices and free-electron lasers operating in an ultrawide range of frequen-
cies. The total electromagnetic fieldsradiation and space-charge wavesd is presented in the frequency domain
as an expansion in terms of transverse eigenmodes of thescoldd cavity, in which the field is excited and
propagates. The mutual interaction between the electron beam and the electromagnetic field is fully described
by coupled equations, expressing the evolution of mode amplitudes and electron beam dynamics. The approach
is applied in a numerical particle codeWB3D, simulating wideband interactions in free-electron lasers operating
in the linear and nonlinear regimes.
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I. INTRODUCTION

Electron devices such as microwave tubes and free-
electron laserssFELsd utilize distributed interaction between
an electron beam and electromagnetic radiation. In free-
electron lasers, accelerated electrons are passing through an
undulator exciting electromagnetic radiation inside a cavity,
as illustrated schematically in Fig. 1. Each of the individual
electrons in the beam emits a partially coherent radiation,
which is called undulator synchrotron radiationf1g. Random
electron distribution in thee-beam causes fluctuations in cur-
rent density, identified as shot noise in the beam current
f2–5g. The total field is given by a summation of all the
contributions of individual electrons to the radiation, result-
ing in a spontaneous emissionf6–14g. In high-gain FELs,
utilizing sufficiently long undulators, the spontaneous emis-
sion radiation excited in the first part of the undulator is
amplified along the remainder of the interaction region, re-
sulting in synchrotron-amplified spontaneous emission
sSASEd f15–20g. It was shown that, when the bunch length is
shorter than the cooperation length, but still much longer
than the radiation wavelength, bunching develops spontane-
ously along the interaction region, giving rise to a self-
induced superfluorescent radiationf21,22g. When the elec-
tron beam is premodulated to a single electron bunch shorter
than the oscillation period of the emitted radiationf23–27g or
to a periodic prebunched beamf28–31g, the wave packets of
the undulator synchrotron radiation emitted by each of the
electrons in the beam add up in the phase, generating a
super-radiant emissionf32g. Analytical relations between
power spectral densities of spontaneous and super-radiant
emissions were developed in Ref.f33g. The spectra of these
radiation phenomena contain a continuum of frequencies and
may be spread over a wide range of wavelengths.

Many models have been developed to describe the mutual
interaction between the gain mediumselectron beamd and the
excited radiationf34–46g. Previous works on multifrequency
FEL models were carried out to investigate longitudinal
modes dynamics and competition in FEL oscillatorsf47g,
sideband effects in waveguide-based FELsf48g, radiation
dynamics and frequency tuning in high-power free-electron
masersf49g, and self-amplification of spontaneous emission
in the high-gain regimef50g. Most of these models are based
on a solution of Maxwell equations and the Lorenz force
equation in the time domain. Contrary to these space-time
models, formulation of the electromagnetic excitation equa-
tions in the frequency domain inherently takes into account
dispersive effects arising from the cavity and the gain me-
dium. Moreover, it facilitates consideration of the statistical
features of the electron beam and the excited radiation, nec-
essary for the study of broadband phenomena like spontane-
ous emission, synchrotron-amplified spontaneous emission
sSASEd, super-radiance, and noise.

In this paper we develop a space-frequency model, which
describes broadband phenomena occurring in electron de-
vices, masers, and FELs and characterized by a continuum of
frequencies. The total electromagnetic field is presented in
the frequency domain as a summation of transverse eigen-
modes of the cavity in which it is excited and propagates. A
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FIG. 1. Schematic illustration of a pulsed beam free-electron

laser.
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set of coupled excitation equations, describing the evolution
of each transverse mode, is solved self-consistently with
beam dynamics equations. This coupled-mode model is em-
ployed in a three-dimensional numerical simulation code
WB3D f51,52g. The code is used to study the statistical and
spectral characteristics of multimode radiation generation in
a free-electron laser, operating in various operational param-
eters. The theory is demonstrated also in the case of “graz-
ing”, when the group velocity of the radiation mode is equal
to the axial velocity of the electrons, resulting in a wideband
interaction between the electron beam and the generated ra-
diation.

II. PRESENTATION OF THE ELECTROMAGNETIC
FIELD IN THE FREQUENCY DOMAIN

The electromagnetic field in the time domain is described
by the space-time electricEsr ,td and magneticHsr ,td signal
vectors. Here,r stands for thesx,y,zd coordinates, where
sx,yd are the transverse coordinates andz is the axis of
propagation. The Fourier transform of the electric field is
defined by

Esr , fd =E
−`

+`

Esr ,tde+j2pft dt, s1d

where f denotes the frequency. A similar expression is de-
fined for the Fourier transformHsr , fd of the magnetic field.
Since the electromagnetic signal is realfi.e., E*sr ,td
=Esr ,tdg, its Fourier transform satisfiesE*sr , fd=Esr ,−fd.

Analytic representation of the signal is given by the com-
plex expressionf52g

Ẽsr ,td ; Esr ,td − jEsr ,td̂, s2d

where

Esr ,td̂ =E
−`

+` Esr ,t8d
t − t8

dt8, s3d

is the Hilbert transform ofEsr ,td. Fourier transformation of
the analytic representations2d results in a “phasorlike” func-

tion Ẽsr , fd defined in the positive frequency domain and
related to the Fourier transform by

Ẽsr , fd = 2Esr , fdusfd = H2Esr , fd f . 0

0 f , 0
J . s4d

The Fourier transform can be decomposed in terms of the
phasorlike functions according to

Esr , fd =
1

2
Ẽsr , fd +

1

2
Ẽ*sr ,− fd, s5d

and the inverse Fourier transform is then

Esr ,td =E
−`

+`

Esr , fde−j2pft df = ReHE
0

`

Ẽsr , fde−j2pft dfJ .

s6d

III. THE WIENER-KHINCHINE AND PARSEVAL
THEOREMS FOR ELECTROMAGNETIC FIELDS

The cross-correlation function of the time dependent elec-
tric Esr ,td and magneticHsr ,td fields is given by

REHsz,td =E
−`

+` HE E fEsr ,t + td 3 Hsr ,tdg · ẑ dx dyJdt.

s7d

Note that for finite energy signals, the total energy carried by
the electromagnetic field is given byWszd=REHsz,0d.

According to the Wiener-Khinchine theorem, the spectral
density function of the electromagnetic signal energy
SEHsz, fd is related to the Fourier transform of the cross-
correlation functionREHsz,td through the Fourier transfor-
mation

SEHsz, fd =E
−`

+`

REHsz,tde+j2pft dt

=E E fEsr , fd 3 H*sr , fdg · ẑ dx dy

=5E E
1

4
fẼsr , fd 3 H̃*sr , fdg · ẑ dx dy f . 0

E E 1

4
fẼsr ,− fd 3 H̃*sr ,− fdg* · ẑ dx dy f , 0.6

s8d

Note that, being the Fourier transform of a real function
REHsz,td, the resulting energy spectrums8d satisfiesSEHsz,
−fd=SEH

* sz, fd.
Following Parseval theorem, the total energy carried by

the electromagnetic field can also be calculated by integrat-
ing the spectral densitySEHsz, fd over the entire frequency
domain

Wszd =E
−`

+`

SEHsz, fddf

=E
0

` FE E 1

2
RehẼsr , fd 3 H̃*sr , fdj · ẑ dx dyGdf .

s9d

We identify

dWszd
df

=
1

2
ReHE E fẼsr , fd 3 H̃*sr , fdg · ẑ dx dyJ ,

s10d

as the spectral energy distribution of the electromagnetic
field sover positive frequenciesd. Note that for non-negative
frequenciesf ù0

dWszd
df

= SEHsz, fd + SEHsz,− fd

= 2E
−`

+`

REHsz,tdcoss2pftddt. s11d
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IV. MODAL PRESENTATION OF ELECTROMAGNETIC
FIELD IN THE FREQUENCY DOMAIN

The phasorlike quantities defined ins4d can be expanded
in terms of transverse eigenmodes of the medium in which
the field is excited and propagates, as done in Refs.f53–55g
for steady-state, single frequency fields. The perpendicular
components of the electric and magnetic fields are given in
any cross section as a linear superposition of a complete set
of transverse eigenmodes

Ẽ'sr , fd = o
q

fC+qsz, fde+jkzqz + C−qsz, fde−jkzqzgẼq'sx,yd,

s12d
H̃'sr , fd = o

q

fC+qsz, fde+jkzqz − C−qsz, fde−jkzqzgH̃q'sx,yd.

C+qsz, fd and C−qsz, fd are scalar amplitudes of theqth for-
ward and backward modes, respectively, with electric field

Ẽq'sx,yd and magnetic fieldH̃q'sx,yd profiles and axial
wave number

kzqsfd =H jÎk'q
2 − k2 k , k'q scutoff modesd,

Îk2 − k'q
2 k . k'q spropagating modesd,

J
s13d

wherek=2pf /c andc=1/Î«0m0 is the velocity of light.
Expressions for the longitudinal component of the electric

and magnetic fields are obtained after substituting the modal
representations12d of the fields into Maxwell’s equations,

where source of electric current densityJ̃sr , fd is introduced

Ẽzsr , fd = o
q

fC+qsz, fde+jkzqz − C−qsz, fde−jkzqzgẼqzsx,yd

+
1

j2pfe0
J̃zsr , fd,

s14d
H̃zsr , fd = o

q

fC+qsz, fde+jkzqz + C−qsz, fde−jkzqzgH̃qzsx,yd.

The evolution of the amplitudes of the excited modes is
described by a set of coupled first-order differential equa-
tions

d

dz
C±qsz, fd = 7

1

2Nq
e7 jkzqzE E FSZq

Zq
* DJ̃'sr , fd

± ẑJ̃zsr , fdG · Ẽq
*sx,yddx dy. s15d

The normalization of the field amplitudes of each mode is
made via each mode’s complex Poynting vector power

Nq =E E fẼq'sx,yd 3 H̃q'
* sx,ydg · ẑ dx dy, s16d

and the mode impedance is given by

Zq =5Î
m0

e0

k

kzq
=

2pfm0

kzq

for TE modes,

Îm0

e0

kzq

k
=

kzq

2pfe0

for TM modes.6 s17d

Substituting the expansions12d in s10d results in an ex-
pression for the spectral energy distribution of the electro-
magnetic fieldsover positive frequenciesd as a sum of energy
spectrum of the excited modes

TABLE I. Operational parameters of millimeter and submillime-
ter wave free-electron maser.

Accelerator

Electron beam energy: Ek=1–6 meV

Electron beam current: I0=1 A

Electron beam pulse duration: T=0.1 ps

Wiggler

Magnetic induction: Bw=2000 G

Period: lw=5 cm

Number of periods: Nw=20

Waveguide

Rectangular waveguide: 1537.5 mm

Mode Cutoff frequency

TE01 20.0 GHz

TE21, TM21 28.3 GHz

TE41, TM41 44.7 GHz

TE03 60.0 GHz

FIG. 2. sColor onlined Energy dependence of the dispersion
solutions.
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dWszd
df

= o
q

propagating

1

2
fuC+qsz, fdu2 − uC−qsz, fdu2gRehNqj

+ o
q

cutof f

ImhC+qsz, fdC−q
* sz, fdjImhNqj. s18d

V. THE ELECTRON BEAM DYNAMICS

The state of the particlei is described by a six-component
vector, which consists of the particle’s position coordinates
r i =sxi ,yi ,zid and velocity vectorvi. The velocity of each par-
ticle, in the presence of electricEsr ,td and magnetic
Bsr ,td=m0Hsr ,td fields, is found from the Lorentz force
equation

dvi

dz
=

1

gi
H−

e

m

1

vzi

fEsr i,tid + vi 3 Bsr i,tidg − vi
dgi

dzJ ,

s19d

where e and m are the electron charge and mass, respec-
tively. The fields in Eq.s19d represent the totalsdc and acd
forces operating on the particle, and include also the self-
field due to space-charge. The Lorentz relativistic factorgi of
each particle is found from the equation for kinetic energy

dgi

dz
= −

e

mc2

1

vzi

vi ·Esr i,tid. s20d

The time it takes a particle to arrive at a positionz is a
function of the timet0i when the particle entered atz=0, and
its instantaneous longitudinal velocityvziszd along the path of
motion

tiszd = t0i
+E

0

z 1

vzi
sz8d

dz8. s21d

The current distribution is determined by the position and
the velocity of the particles in the beam

Jsr ,td = −
Q

N
o
i=1

N S vi

vzi

Ddsx − xiddsy − yiddft − tiszdg. s22d

Here,Q= I0T is the total charge of thee-beam pulse with dc
current I0 and temporal durationT. The phasorlike current
density is given by

J̃sr , fd = 2usfdE
−`

+`

Jsr ,tde+j2pftdt = − 2usfd
Q

N
o
i=1

N S vi

vzi

D
3dsx − xiddsy − yide+j2pftiszd, s23d

and its substitution into the excitation equations15d leads to

d

dz
C±qsz, fd = ±

1

Nq

Q

No
i=1

N H 1

vzi

SZq

Zq
* Dv'p

· Ẽ±q'

* sxi,yid

+ Ẽ±qz

* sxi,yidJejf2pftiszd7kzq
zg. s24d

TABLE II. Synchronism frequencies for several beam energies.

Beam energy
sMeVd

Synchronism frequenciessGHzd

TE01 TE21,TM21 TE41,TM41 TE03

1.62 69.6sgrazingd --- --- ---

2.00 46.1, 149.5 --- --- ---

2.44 42.0, 230.5 136.2sgrazingd --- ---

3.00 39.8, 348.4 88.9, 299.3 --- ---

4.09 38.2, 632.9 78.1, 592.9 336.1sgrazingd ---

5.00 37.5, 927.8 75.0, 890.3 217.5, 747.8 ---

5.60 37.3, 1151.0 73.9, 1114.5 203.6, 984.8 602.6sgrazingd

FIG. 3. sColor onlined Dispersion solutions for TE01 transverse
mode forEk=2 MeV.
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The resulting expression, together with the beam dynamics
equationss19d–s21d, forms a closed set of equations, en-
abling a self-consistent solution of the electromagnetic fields
sradiation and space-charge wavesd in electron devices and
free-electron lasers. The space-frequency approach described

above is employed in theWB3D numerical code, aimed at
simulation of free-electron laser operation at wideband fre-
quencies.

Following s20d, the total kinetic energy of all particles in
the electron beam is given by

FIG. 4. sColor onlined Super-radiant emission from an ultrashort
bunch when the beam energy isEk=2 MeV and a single TE01 mode
is excited:sad Energy spectrum;sbd temporal wave packet; andscd
correlation function.

FIG. 5. sColor onlined That of Fig. 4, but at grazing condition
for mode TE01 sthe beam energy isEk<1.62 MeVd.
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Ekbeam
szd =

Q

N

mc2

e o
i=1

N

fgiszd − 1g. s25d

The change in the kinetic energy of the beam is calculated by
substituting Eq.s20d into the derivative ofs25d

dEkbeam

dz
= −

Q

N
o
i=1

N
1

vzi

vi ·Esr i,tid. s26d

Note that the energy conservation

Wszd + Ekbeam
szd = Wsz= 0d + Ekbeam

sz= 0d, s27d

is used in the code for monitoring of numerical calculation
accuracy at any planez along the interaction region.

VI. NUMERICAL RESULTS

To demonstrate the utilization of the model, we present a
study of super-radiant emission in a waveguide-based, pulsed
beam free-electron masersFEMd, with operational param-
eters given in Table I. Such a FEM is expected to operate at
millimeter and submillimetersTHzd wavelengths. When a
FEL utilizes a waveguide, the axial wave number of trans-
verse modeq follows the dispersion relation

kzq
sfd =

2p

c
Îf2 − fcoq

2 , s28d

where fcoq
=sc/2pdk'q is the cutoff frequency of the mode.

In synchronism with that mode, the dispersion relation for
the electron beam is given by

kzq
sfd =

2pf

vz0
+ kw, s29d

wherevz0 is the average velocity of the accelerated electrons
andkw=2p /lw slw is the wiggler’s periodd. The correspond-
ing curves of synchronism frequency vs beam energy for the
FEM are shown in Fig. 2. Only waveguide modes which
have in their field profile components that interact efficiently
with the wiggling electrons are shown. Table II summarizes
several examined cases resulting from Eq.s29d in the multi-
transverse mode operational regime. For each transverse
modeq, the acceleration energyEk can be set to excite two
frequencies corresponding to the “slow”svgq

,vz0d and
“fast” svgq

.vz0d synchronism frequencies or to the special
case of “grazing,” wherevgq

=vz0 and a single synchronism
frequency is obtained. Here

FIG. 6. sColor onlined Energy spectra for different acceleration energies:sad Ek=2.44 MeV sgrazing in the TE21, TM21 modesd; sbd
Ek=3.00 MeV; scd Ek=4.09 MeV sgrazing in the TE41, TM41 modesd; sdd Ek=5.00 MeV.
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vgq
= 2p

df

dkzq

=
c2

2pf
kzq

sfd, s30d

is the group velocity of the excited modeq.
The effect of super-radiance emerges when the duration of

the electron beam pulse is much less than the period of the
electromagnetic waves expected to be excited at synchro-
nism frequencies according to Table II. The waveguide and
e-beam dispersion curves when the acceleration energy is
Ek=2 MeV are shown in Fig. 3. In this case a single wave-
guide mode TE01 is excited at two separated synchronism
frequenciessslow and fastd 46.1 and 149.5 GHz, respec-
tively. The spectral density of energy flux calculated with the
codeWB3D is shown in Fig. 4sad. The spectrum peaks at the
two synchronism frequencies with mainlobe bandwidth of
Df1,2<1/tsp1,2

, wheretsp1,2
<Nwlwus1/vz0

d−s1/vg1,2
du is the

slippage time. The corresponding temporal wave packet
fshown in Fig. 4sbdg consists of two slow and fast pulses
with durations equal to the slippage times modulating carri-
ers at their respective synchronism frequencies. The correla-
tion function given in Eq.s7d is drawn in Fig. 4scd. Lowering
the beam energy toEk<1.62 MeV results in grazing be-
tween thee-beam and the waveguide dispersion curves at a
single synchronism frequency, 69.6 GHz. The spectrum in
the case of grazing, the corresponding temporal wave packet,
and correlation function are shown in Fig. 5.

As the acceleration energy is increased, transverse modes
of higher orders are being excited simultaneouslysin addi-

tion to the mode TE01d, extending the radiation spectrum
over a wide range of frequencies from a few tens of GHz to
more then THz. Figure 6 shows the energy spectral densities
of the excited waveguide modes as the beam energy is in-
creased.

VII. CONCLUSIONS

The presented coupled-mode theory, formulated in the
frequency domain, enables development of a three-
dimensional model, which can accurately describe wideband
interactions between radiation and electron beam in electron
devices and free-electron lasers. Space-frequency solution of
the electromagnetic equations considers dispersive effects
arising from the resonator and gain medium. Such effects
play a role also in the special case of grazing, and cannot be
accurately treated in approximated space-time approaches.
We note that our space-frequency model described here also
facilitates the consideration of statistical features of the elec-
tron beam and the excited radiation, enabling simulation of
the interaction of a free-electron laser operating in the linear
and nonlinear regimes.
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